Journals

Under review

  1. D. L. Sounas, L. Ranzani, and A. Alù, “Beyond the Bode-Fano bound with time-modulation: when it is possible and when it is not.”
  2. M. M. Moeini and D. L. Sounas, “Image compression with light.”
  3. R. Keshavarz, D. L. Sounas, S. Keshavarz, and N. Shariati, “Enabling wireless communications, power harvesting, and saving using a multimode smart nonlinear circuit (MSNC).”

2023

  1. K. Hecht, D. Gonzalez-Ovejero, D. L. Sounas, and M. J. Mencagli, “First-principles Analysis of Energy Exchange in Time-varying Capacitors for Energy Trapping Applications,” IEEE Access, vol. 11, p. 71494 – 71502, 2023 (link).
  2. M. Cotrufo, A. Cordaro, D. L. Sounas, A. Polman, and A. Alù, “Passive Bias-Free Nonreciprocal Metasurfaces Based on Nonlinear Quasi-Bound States in the Continuum,” Nature Photonics, accepted.

2022

  1. S. Keshavarz and D. L. Sounas, “Spatio-temporally modulated gyrators with extended bandwidth through dual-sideband operation,” Phys. Rev. Applied, vol. 18, p. 044 068, 2022 (link).
  2. M. J. Mencagli, D. L. Sounas, M. Fink, and N. Engheta, “Static-to-dynamic field conversion with time-varying media,” Phys. Rev. B, vol. 105, no. 14, p. 144 301, 2022 (link).
  3. R. Duggan, H. Moussa, Y. Radi, D. L. Sounas, and A. Alù, “Stability bounds on superluminal propagation in active structures,” Nature Commun., vol. 13, p. 1115, 2022 (link).

2021

  1. Z. Katbay, D. L. Sounas, and M. Ismail, “Retrodirective wireless power transfer for short and long range applications,” Analog Integr. Circ. Sig. Process., vol. 109, pp. 253–259, Aug. 2021. DOI: 10.1007/s10470-021-01936-6.
  2. Z. Katbay, D. L. Sounas, and M. Ismail, “Dynamic wireless power transfer in the presence of reflecting walls,” Analog Integr. Circ. Sig. Process., vol. 108, pp. 447–453, Jun. 2021. DOI: 10.1007/s10470-021-01840-z.
  3. A. Mekawy, D. L. Sounas, and A. Alù, “Free-Space Nonreciprocal Transmission Based on Nonlinear Coupled Fano Metasurfaces,” Photonics, vol. 8, no. 5, p. 139, Apr. 2021. DOI: 10.3390/photonics8050139.
  4. A. Nagulu, A. Mekkawy, M. Tymchenko, D. Sounas, A. Alù, and H. Krishnaswamy, “Ultra-Wideband Switched-Capacitor Delays and Circulators – Theory and Implementation,” IEEE J. Solid-State Circuits, vol. 56, no. 5, pp. 1412-1424, May 2021, doi: 10.1109/JSSC.2021.3055230.
  5. H. M. Kadry, M. Alhawari, and D. L. Sounas, “Angular-Momentum Biased Circulator with Locally Generated Modulation,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 551-565, Jan. 2021 (link).

2020

  1. M. M. Moeini and D. L. Sounas, “Discrete Space Optical Signal Processing,” Optica, vol. 7, no. 10, pp. 1325-1331, 2020 (link).
  2. S. A. Mann, D. L. Sounas, and A. Alù, “Nonreciprocal cavities and the time-bandwidth limit: reply,” Optica, vol. 7, no. 9, pp. 1102-1107, 2020 (link).
  3. F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analog Computing with Metamaterials,” Nature Review Mater., 2020.
  4. H. Li, H. Moussa, D. Sounas, and A. Alù, “Parity-Time Symmetry Based on Time Modulation,” Phys. Rev. Applied, vol. 14, p. 031002, 2020 (link).
  5. A. Kord, D. Sounas, and A. Alù, “Microwave nonreciprocity,” Proc. IEEE, vol. 108, no. 10, pp. 1728-1758, 2020 (web).
  6. D. Ramaccia, D. L. Sounas, A. V. Marini, A. Toscano, and F. Bilotti, “Electromagnetic Isolation Induced by Time-Varying Metasurfaces: Non-Reciprocal Bragg Grating,” IEEE Antennas Wireless Propag. Lett., (web).
  7. D. L. Sounas, “Virtual perfect absorption through modulation of the radiative decay rate,” Phys. Rev. B, vol. 101, p. 104303, 2020 (web).
  8. H. Kwon, A. Cordaro, D. Sounas, A. Polman, and A. Alù, “Dual-Polarization Analog 2D Image Processing with Nonlocal Metasurfaces,” ACS Photon., vol. 7, pp. 1799-1805, 2020 (web).
  9. Z. Xiao, D. L. Sounas, A. Nagulu, M. Tymchenko, T. Dinc, H. Krishnaswamy, and A. Alù, “Role of synchronization in magnetless nonreciprocal devices based on commutated transmission lines,” Phys. Rev. Appl., vol. 13, p. 064033, 2020 (web).

2019

  1. Y. Yu, G. Michetti, M. Pirro, A. Kord, D. L. Sounas, Z. Xiao, C. Cassella, A. Alù, and M. Rinaldi, “Radio Frequency Magnet-free Circulators Based on Spatiotemporal Modulation of Surface Acoustic Wave Filters,” IEEE Trans. Microwave Theory Techn., vol. 67, no. 12, Dec. 2019 (web).
  2. Y. Yu, G. Michetti, A. Kord, M. Pirro, D. L. Sounas, Z. Xiao, C. Cassella, A. Alù, and M. Rinaldi, “Highly-Linear Magnet-Free Microelectromechanical Circulators,” J. Microelectromech. Syst., vol. 28, no. 6, pp. 933-940, Oct. 2019, (web).
  3. F. Monticone, D. Sounas, A. Krasnok, and A. Alù, “Can a nonradiating mode be externally excited? Nonscattering states vs. embedded eigenstates,” ACS Photon., vol. 6, pp. 3108-3114, 2019 (web).
  4. A. Cordaro, H. Kwon, D. Sounas, A. F. Koenderink, A. Alù, and A. Polman, “High-index dielectric metasurfaces performing mathematical operations,” Nano Lett., vol. 19, pp. 8418-8423, 2019 (web).
  5. D. Ramaccia, D. L. Sounas, A. Alù, A. Toscano, and F. Bilotti, “Phase-Induced Frequency Conversion and Doppler Effect with Time-Modulated Metasurfaces,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1607-1617, Mar. 2020 (web).
  6. R. Duggan, D. Sounas, and A. Alù, “Optically driven Faraday rotation in instantaneous nonlinear media,” Optica, vol. 6, pp. 1152-1157, 2019 (web).
  7. M. Tymchenko, D. Sounas, A. Nagulu, H. Krishnaswamy, and A. Alù, “Quasi-Electrostatic Wave Propagation Beyond the Delay-Bandwidth Limit in Switched Networks,” Phys. Rev. X, vol. 9, p. 031015, 2019 (web).
  8. S. A. Mann, D. L. Sounas, and A. Alù, “Broadband delay lines and nonreciprocal resonances in unidirectional waveguides,” Phys. Rev. B, vol. 100, p. 020303(R), 2019 (web).
  9. L. Quan, D. L. Sounas, and A. Alù, “Non-reciprocal Willis coupling in zero-index moving media,” Phys. Rev. Lett., vol. 123, p. 064301, 2019 (web).
  10. C. Cassella, G. Michetti, M. Pirro, Y. Yu, A. Kord, D. Sounas, A. Alù, and M. Rinaldi, “Radio Frequency Angular Biased Quasi-LTI Nonreciprocal Acoustic Filters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 66, pp. 1814-1825, 2019 (web).
  11. C. P. Wiederhold, D. L. Sounas, and A. Alù, “Nonreciprocal acoustic propagation and leaky-wave radiation in a waveguide with flow,” J. Acoust. Soc. Am., vol. 146, pp. 802-809, 2019 (web).
  12. A. Mock, D. Sounas, and A. Alù, “Magnet-free circulator based on spatiotemporal modulation of photonic crystal defect cavities,” ACS Photon., vol. 6, pp. 2056-2066, 2019 (web).
  13. A. Kord, M. Tymchenko, D. L. Sounas, H. Krishnaswamy, and A. Alù, “CMOS Integrated Magnetless Circulators Based on Spatiotemporal Modulation Angular-Momentum Biasing,” IEEE Trans. Microw. Theory Techn., vol. 67, pp. 2649-2662, 2019 (web).
  14. G. D’Aguanno, D. L. Sounas, H. M. Saied, and A. Alù, “Nonlinearity-based circulator,” Appl. Phys. Lett., vol. 114, p. 181102, 2019 (web).
  15. S. A. Mann, D. L. Sounas, and A. Alù, “Nonreciprocal cavities and the time-bandwidth limit,” Optica, vol. 6, pp. 104-110, 2019 (web).

2018

  1. D. L. Sounas, “Optical isolation by hot atoms,” Nat. Photon., vol. 12, pp. 720-721, 2018 (web).
  2. A. Kord, D. L. Sounas, and A. Alù, “Active cloaking using parity-time symmetric satellites,” Phys. Rev. Applied, vol. 10, p. 054040, 2018 (web).
  3. H. Kwon*, D. L. Sounas*, A. Cordaro, A. Polman, and A. Alù, “Nonlocal metasurfaces for optical signal processing,” Phys. Rev. Lett., vol. 121, p. 173004, 2018 (web).
  4. D. L. Sounas, N. A. Estep, A. Kord, and A. Alù, “Angular-momentum biased circulators and their power consumption,” IEEE Antennas Wireless Propag. Lett., vol. 17, pp. 1963-1967, 2018 (web).
  5. A. Kord, D. L. Sounas, Z. Xiao, and A. Alù, “Broadband cyclic-symmetric magnet-less circulators and theoretical bounds on their bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 66, pp. 5472-5481, 2018 (web).
  6. D. Ramaccia, D. L. Sounas, A. Alù, F. Bilotti, and A. Toscano, “Non-reciprocity in antenna radiation induced by space-time varying metamaterial cloaks,” IEEE Antennas Wireless Propag. Lett., vol. 17, pp. 1968-1972, 2018 (web).
  7. D. L. Sounas and A. Alù, “Nonreciprocity based on nonlinear resonances,” IEEE Antennas Wireless Propag. Lett., vol. 17, pp. 1958-1962, 2018 (web).
  8. C. Caloz, A. Alù, S. Tretyakov, D. L. Sounas, K. Achouri, and Z. L. Deck-Léger, “Electromagnetic nonreciprocity” Phys. Rev. Appl., vol. 10, p. 047001, 2018 (web).
  9. A. Nagulu, T. Dinc, Z. Xiao, M. Tymchenko, D. L. Sounas, A. Alù, and H. Krishnaswamy, “Non-reciprocal components based on switched transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 66, pp. 4706-4725, 2018 (web).
  10. L. Quan, Y. Ra’di, D. L. Sounas, and A. Alù, “Maximum Willis coupling in acoustic scatterers,” Phys. Rev. Lett., vol. 120, p. 254301, 2018 (web).
  11. A. Mock, D. L. Sounas, and A. Alù, “Tunable orbital angular momentum radiation from angular momentum biased microcavities,” Phys. Rev. Lett., vol. 121, p. 103901, 2018 (web).
  12. C. Qin, F. Zhou, Y. Peng, D. L. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett., vol. 120, p. 133901, 2018 (web).
  13. D. L. Sounas and A. Alù, “Fundamental bounds on the operation of Fano nonlinear isolators,” Phys. Rev. B, vol. 97, p. 115431, 2018 (web).
  14. A. Kord, D. L. Sounas, and A. Alù, “Pseudo-linear-time-invariant magnet-less circulators based on differential spatio-temporal modulation of resonant junctions,” IEEE Trans. Microw. Theory Techn., vol. 66, pp. 2731–2745, 2018 (web).
  15. R. Fleury, D. L. Sounas, and A. Alù, “Non-reciprocal optical mirrors based on spatio-temporal modulation,” J. Opt., vol. 20, p. 034007, 2018 (web).
  16. A. Kord, D. L. Sounas, and A. Alù, “Achieving full-duplex communication: Magnet-less parametric circulators for full-duplex communication systems,” IEEE Microw. Mag., vol. 19, no. 1, pp. 84–90, 2018 (web).

2017

  1. H. Chalabi, Y. Ra’di, D. L. Sounas, and A. Alù, “Efficient anomalous reflection through near-field interactions in metasurfaces,” Phys. Rev. B, vol. 96, p. 075432, 2017 (web).
  2. D. L. Sounas, J. Soric, and A. Alù, “Broadband passive isolators with large efficiency based on coupled nonlinear resonances,” Nature Electron., vol. 1, pp. 113–119, 2018, [This paper was featured in the cover of Nature Electronics] (web).
  3. A. Kord, D. L. Sounas, and A. Alù, “Magnet-less circulators based on spatio-temporal modulation of bandstop filters in a delta topology,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 2, pp. 911–926, 2018 (web).
  4. D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time-modulation,” Nature Photon., vol. 11, pp. 774–783, 2017, [This paper was highlighted in the cover of Nature Photonics] (web).
  5. Y. Ra’di, D. L. Sounas, and A. Alù, “Meta-gratings: Beyond the limits of graded metasurfaces for wavefront control,” Phys. Rev. Lett., vol. 119, p. 067404, 2017, [This paper has been selected as an Editor’s Suggestion] (web).
  6. T. Dinc, M. Tymchenko, A. Nagulu, D. L. Sounas, A. Alù, and H. Krishnaswamy, “Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity,” Nat. Commun., vol. 8, p. 795, 2017 (web).
  7. D. L. Sounas and A. Alù, “Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures,” Phys. Rev. Lett., vol. 118, p. 154302, 2017 (web).
  8. C. Coulais, D. L. Sounas, and A. Alù, “Static non-reciprocity in mechanical metamaterials,” Nature, vol. 542, pp. 461–464, 2017 (web).
  9. D. Ramaccia, D. L. Sounas, A. Alù, A. Toscano, and F. Bilotti, “Doppler cloak restores invisibility for objects in relativistic motion,” Phys. Rev. B, vol. 95, p. 075113, 2017 (web).
  10. F. Monticone, D. L. Sounas, and A. Alù, “Fundamental limitations on passive cloaking, and beyond,” Forum for Electromagnetic Research Methods and Applications Technologies (FERMAT), vol. 19, p. 4, Jan.-Feb. 2017 (web).

2016

  1. R. Maas, S. A. Mann, D. L. Sounas, A. Alù, E. C. Garnett, and A. Polman, “Generalized antireflection coatings for complex bulk metamaterials,” Phys. Rev. B, vol. 93, p. 195433, 2016 (web).
  2. Y. Ra’di, D. L. Sounas, A. Alù, and S. Tretyakov, “Parity-time-symmetric teleportation,” Phys. Rev. B, vol. 93, p. 235427, 2016 (web).
  3. R. Fleury, D. L. Sounas, and A. Alù, “Parity-time symmetry in acoustics: Theory, devices, and potential applications,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 5, p. 5000809, 2016 (web).
  4. D. L. Sounas and A. Alù, “Color separation through spectrally-selective optical optical funneling,” ACS Photonics, vol. 3, no. 4, pp. 620–626, 2016 (web).
  5. D. Correas-Serrano, J. S. Gomez-Diaz, D. L. Sounas, Y. Hadad, A. Alvarez-Melcon, and A. Alù, “Non-reciprocal graphene devices and antennas based on spatio-temporal modulation,” IEEE Antenn. Wireless Propag. Lett., vol. 15, pp. 1529–1532, 2016 (web).
  6. N. Estep, D. L. Sounas, and A. Alù, “Magnet-less microwave circulators based on spatiotemporally-modulated rings of coupled resonators,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 502–518, 2016 (web).

2015

  1. D. Ramaccia, D. L. Sounas, A. Alù, F. Bilotti, and A. Toscano, “Non-reciprocal filtering horn antennas for satellite systems using angular momentum-biased metamaterial inclusions,” IEEE Trans. Antennas Propag., vol. 63, no. 12, pp. 5593–5600, 2015 (web).
  2. H. S. Skulason, D. L. Sounas, F. Mahvash, S. Francoeur, M. Siaj, C. Caloz, and T. Szkopek, “Field effect tuning of microwave Faraday rotation and isolation with large-area graphene,” Appl. Phys. Lett., vol. 107, p. 093106, 2015 (web).
  3. R. Fleury, D. L. Sounas, M. Haberman, and A. Alù, “Non-reciprocal acoustics,” Acoustics Today, vol. 11, no. 3, pp. 14–21, 2015 (web).
  4. Y. Hadad, D. L. Sounas, and A. Alù, “Space-time gradient metasurfaces,” Phys. Rev. B, vol. 92, 100304(R), 2015 (web).
  5. D. L. Sounas, R. Fleury, and A. Alù, “Unidirectional cloaking and super-stealth with parity-time symmetric metasurfaces,” Phys. Rev. Appl., vol. 4, p. 014005, 2015 (web).
  6. R. Fleury, D. L. Sounas, and A. Alù, “A subwavelength ultrasonic circulator based on spatio-temporal modulation,” Phys. Rev. B, vol. 91, no. 17, p. 174306, 2015 (web).
  7. R. Fleury, D. L. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun., vol. 6, p. 5905, 2015 (web).

2014

  1. D. L. Sounas and A. Alù, “Optical isolation based on angular-momentum biasing,” Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), vol. 6, no. 2, Nov. 18, 2014 (web).
  2. N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity based on parametrically modulated coupled-resonator loops,” Nature Phys., vol. 10, pp. 923–927, 2014, [This paper has been featured on a UT Austin press release, Phys.org, MIT Technology Review. A News and Views commentary by Ari Sihvola appeared in the same issue] (web).
  3. R. Fleury, D. L. Sounas, and A. Alù, “Negative refraction and planar focusing based on parity-time symmetric metasurfaces,” Phys. Rev. Lett., vol. 113, p. 123903, 2014 (web).
  4. D. L. Sounas and A. Alù, “Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation,” Opt. Lett., vol. 39, no. 13, pp. 4053–4056, 2014 (web).
  5. D. L. Sounas and A. Alù, “Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation,” ACS Photonics, vol. 1, no. 3, pp. 198–204, 2014, [This paper has been selected to appear on the cover of ACS Photonics] (web).
  6. R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science, vol. 343, no. 6170, pp. 516–519, 2014, [This paper has been selected to appear on the cover of Science. A perspective from S. Cummer has appeared on the same issue, pp. 495-496. News highlights have appeared on NBC News, Phys.org, Science Daily, LiveScience, among others] (web).

2013

  1. D. L. Sounas, C. Caloz, and A. Alù, “Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials,” Nat. Commun., vol. 4, p. 2407, 2013 (web).
  2. N. Chamanara, D. L. Sounas, T. Szkopek, and C. Caloz, “Terahertz magnetoplasmon energy concentration and splitting in graphene pn junctions,” Opt. Express, vol. 21, no. 21, pp. 25356–25363, 2013 (web).
  3. Q. Zhang, D. L. Sounas, S. Gupta, and C. Caloz, “Wave-interference explanxation of group-delay dispersion in resonators (education column),” IEEE Antennas Propag. Mag., vol. 55, no. 2, pp. 212–227, Apr. 2013 (web).
  4. N. Chamanara, D. Sounas, and C. Caloz, “Non-reciprocal magnetoplasmon graphene coupler,” Opt. Express, vol. 21, no. 9, pp. 11248–11256, 2013 (web).
  5. D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett., vol. 102, p. 191 901, 2013 (web).
  6. T. Kodera, D. L. Sounas, and C. Caloz, “Magnetless nonreciprocal metamaterial (MNM) technology: Application to microwave components,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1030–1042, Mar. 2013 (web).
  7. Q. Zhang, D. Sounas, and C. Caloz, “Synthesis of cross-coupled reduced-order dispersive delay structures (DDSs) with arbitrary group delay and controlled magnitude,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1043–1052, Mar. 2013 (web).
  8. S. Gupta, D. Sounas, Q. Zhang, and C. Caloz, “All-pass dispersion synthesis using microwave C-sections,” Int. J. Circ. Theor. Appl., vol. 42, pp. 1228–1245, 2013 (web).
  9. D. L. Sounas, T. Kodera, and C. Caloz, “Electromagnetic modeling of a magnet-less non-reciprocal gyrotropic metasurface,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 221–231, Jan. 2013 (web).

2012

  1. S. Gupta, D. L. Sounas, H. V. Nguyen, Q. Zhang, and C. Caloz, “CRLH-CRLH C-Section dispersive delay structures with enhanced group-delay swing for higher analog signal processing resolution,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 3939–3949, Dec. 2012 (web).
  2. T. Kodera, D. L. Sounas, and C. Caloz, “Switchable magnetless nonreciprocal metamaterial (MNM) and its application to a switchable Faraday rotation metasurface,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1454–1457, 2012 (web).
  3. N. Chamanara, D. Sounas, T. Szkopek, and C. Caloz, “Optically transparent and flexible graphene reciprocal and nonreciprocal microwave planar components,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 360–362, Jul. 2012 (web).
  4. A. I. Dimitriadis, D. L. Sounas, N. V. Kantartzis, C. Caloz, and T. D. Tsiboukis, “Surface susceptibility bianisotropic matrix model for periodic metasurfaces of uniaxially mono-anisotropic scatterers under oblique TE wave incidence,” IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5753–5767, Dec. 2012 (web).
  5. M. Dagher, N. Chamanara, D. Sounas, R. Martel, and C. Caloz, “Theoretical investigation of traveling-wave amplification in metallic carbon nanotubes biased by a DC Field,” IEEE Trans. Electron. Dev., vol. 11, no. 3, pp. 463–471, May 2012 (web).
  6. D. L. Sounas and C. Caloz, “Gyrotropy and non-reciprocity of graphene for microwave applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 4, pp. 901–914, Apr. 2012 (web).

2011

  1. T. Kodera, D. L. Sounas, and C. Caloz, “Non-reciprocal magnet-less CRLH leaky-wave antenna based on a ring metamaterial structure,” IEEE Antennas Wireless Propag. Lett., pp. 1551–1554, Dec. 2011 (web).
  2. D. L. Sounas and C. Caloz, “Edge surface modes in magnetically-biased chemically-doped graphene strips,” Appl. Phys. Lett., vol. 99, p. 231902, 2011 (web).
  3. T. Kodera, D. L. Sounas, and C. Caloz, “Artificial Faraday rotation using a ring metamaterial structure without static magnetic field,” Appl. Phys. Lett., vol. 99, p. 031114, 2011 (web).
  4. D. L. Sounas and C. Caloz, “Electromagnetic non-reciprocity and gyrotropy of graphene,” Appl. Phys. Lett., vol. 98, p. 021911, 2011 (web).

2009

  1. D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Imaging properties of lossless double-negative metamaterial wedges: Analytical and numerical investigation,” Phys. Rev. B, vol. 80, p. 195105, 2009 (web).
  2. D. L. Sounas and N. V. Kantartzis, “Systematic surface waves analysis at the interfaces of composite DNG/SNG media,” Opt. Express, vol. 17, no. 10, pp. 8513–8524, 2009 (web).
  3. N. V. Kantartzis, D. L. Sounas, and T. D. Tsiboukis, “Stencil-optimized time-domain algorithms for compact circular patch antennas with anisotropic metamaterial substrates,” IEEE Trans. Magn., vol. 45, no. 3, pp. 1368–1371, Mar. 2009 (web).

2007

  1. D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models,” Phys. Rev. E, vol. 76, p. 046606, 2007 (web).
  2. N. V. Kantartzis, D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, “A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna structures,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1329–1332, Apr. 2007 (web).

2006

  1. D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Focusing efficiency analysis and performance optimization of arbitrarily-sized DNG metamaterial slabs with losses,” IEEE Trans. Microw. Theory Tech., vol. 12, no. 12, pp. 4111–4121, Dec. 2006 (web).
  2. D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Optimized ADI-FDTD analysis of circularly polarized microstrip and dielectric resonator antennas,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 63–65, Feb. 2006 (web).

Comments are closed.